technical excellence. it's that simple.

JavaOne

Building JavaServer Faces
Applications with Spring and
Hibernate

Kito Mann Chris Richardson

' ' Author of POJOs in Action
AN e ST 1 AEIan Chris Richardson Consulting, Inc

Virtua, Inc NG
WWW.virtua.com www.chrisrichardson.net

TS-7082

2007 JavaOne®M Conference | Session TS-7082 | iava.sun.com/ iavaone

JavaOne

What You Will Learn...

Why you should
use JavaServer Faces technology,
Spring, and Hibernate together and
how to do it

@ Sun 2007 JavaOneS™ Conference | Session TS-7082 | 2 java.sun.com/javaone

JavaOne

About Kito Mann

* Author, Jav rver F in Action

JAVASERVERE
* Trainer, consultant, architect, mentor I:A(E |
* Internationally recognized speaker INACTION &

+ JavaOneSM Conference, JavaZone,
TSS Symposium, Javapolis, NFJS, etc.

* Founder, JSF Central]
* http://lwww.jsfcentral.com . -

*Java Community ProcessSM (JCPSM) Member

« JavaServer™ Faces 1.2 platform, JavaServer Pages 2.1 (JSP™) software, Design-
Time API for JavaBeans™ architecture, Design-Time Metadata for JavaServer
Faces Components, WebBeans, etc.

Kita 0. Mann
Forswond by Ed Bans

* Experience with Java™ platform since its release in 1995

* Web development since 1993

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 3 java.sun.com/javaone

JavaOne

About Chris Richardson

Developing Enterprise Applications with Lightweight Frameworks

* Grew up in England 4

- Live in Oakland, CA SR OJOS

- Developing software for 21 years 58 INACTION
* OO development since 1986

* Java platform since 1996

* Java Platform, Enterprise Edition
(Java EE) since 1999

* Author of POJOs in Action
* Speaker at JavaOne Conference, JavaPolis, NFJS, JUGs,
* Chair of the eBIG Java SIG in Oakland (www.ebig.org)

*Run a consulting and training company that helps organizations build
better software faster

(hris Richardson

/'IIM.NNING

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 4 java.sun.com/javaone

JavaOne

Agenda

Using JavaServer Faces technology
for the Ul

Building a POJO backend
Using Spring in the business tier
Using Hibernate for persistence

Integrating Spring and JavaServer Faces
technology

@f-'HH 2007 JavaOneSM Conference Session TS-7082

© Sun

Using JavaServer Faces technology
for the Ul

Building a POJO backend
Using Spring in the business tier
Using Hibernate for persistence

Integrating Spring and JavaServer Faces
technology

2007 JavaOnesM Conference Session TS-7082 6 java.sun.com/javaone

JavaOne

JavaServer Faces Technology
Overview

Standard web user interface (Ul) framework for
Java platform

JavaServer Faces 1.0 platform: Standardized through
Java Community Process (JCP) in 2004 (JSR 127)

JavaServer Faces 1.2 platform: Standardized through
JCP in 2006 (Java Specification Request (JSR) 252)

Part of Java EE 5.0 platform
Specification consists of:
Server side Ul component and event model
Set of basic Ul components
Basic MVC-style application infrastructure

©Sun 2007 JavaOnes™ Conference | Session TS-7082 | 7 java.sun.com/javaone

JavaOne

© Sun

JavaServer Faces Technology
Overview

Can automatically synchronize Ul components with
application objects

Includes basic Dependency Injection container

Extensive tool support

Sun, Oracle, IBM, BEA, Exadel, Borland, JetBrains,
Genuitec, others

Enables RAD-style approach to Java platform web
development

Built on top of Servlet API
Works with JSP framework, but does not require it

2007 JavaOneS™ Conference | Session TS-7082 | 8 java.sun.com/javaone

JavaOne

JavaServer Faces Technology
Overview

+ Standard Ul component model enables a
third-party component marketplace

* Grids, Trees, Menus, Sliders, Panels, Charts, Popup
Windows, Calendars, etc.

* Open source and commercial vendors
 Often have integrated AJAX support

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 9 java.sun.com/javaone

JavaOne

JavaServer Faces Technology

vs. Struts

Heavy

d Transparent AJAX support
abstraction

Automatic markup generation (i.e., HTML, WML)

Declarative integration of user interface with
business objects (both read and write)

Stateful user interface component model JavaServer Faces
(running on the server)

Server-side handling of user interface events

Type conversion

Navigation

Form handling and validation

\
Enhanced localization Struts) .x

Layer separation (Model Y)

Resource management

Extensible templating mechanism

JavaServer Pages

Integration with Java, session management , lifecycle
management, basic error handling , security,
deployment and packaging , JYEE integration, etc.

Servlet API

Little -
abstraction HTTP request and response handling Web server

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 10 java.sun.com/javaone

JavaOne

View
(JSP, Facelets, Clay) <h:commandButton value="Save"
actior="#{createProjectBeanadd}"/>

c
o
>
o Managed Beans
Backing b ~L
acking bean - -
(POJO) public String add()

{

Project project= getVisit() .getCurrentProject();
getProjectCoordinatox) .add(project) ;
return “success”;

JavaServer

Faces Platfo rm </navigation-case>
P rogram m I n g <from-outcome>success</from-outcome>

Model

© Sun

<outcome

Navigation rules

<navigation-rule>
(faces-config.xml)

<from-view-id>create. jsp</from-view-id>

<navigation-case>
<from-outcome>failure</from-outcome>
<to-view-id>create. jsp</to-view-id>

<navigation-case>

<to-view-id>show all.jsp</to-view-id>
</navigation-case>
</navigation-rule>

2007 JavaOne®M Conference | Session TS-7082 | 1

java.sun.com/javaone

JavaOne

The JavaServer Faces Technology
Expression Language

* Can reference managed bean properties and
methods

{updateProjectBean comments}

Managed bean property

{createProjectBean add}

Managed bean method

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 12 java.sun.com/javaone

JavaOne

The JavaServer Faces Technology
Expression Language

* Expression evaluation is pluggable

{updateProjectBean comments}

VariableResover PropertyResolver
(ELResolver evaluates both in JSF V.Y)

* Can either replace or decorate the default functionality
* Key integration point

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 13 java.sun.com/javaone

JavaOne

DEMO

JavaServer Faces Platform Ul Layer

2007 JavaOnes™ Conference | Session TS-7082 | 14 iava.sun.com/iavaone

JavaOne

Agenda

Using JavaServer Faces technology
for the Ul

Building a POJO backend
Using Spring in the business tier
Using Hibernate for persistence

Integrating Spring and JavaServer Faces
technology

@ Sun 2007 JavaOnesM Conference | Session TS-7082

JavaOne

Avoid the Smart Ul Anti-pattern

* Managed beans could do it all:
* Implement the presentation logic
* Implement the business rules
* Access the database

* This might work for tiny application

* For real world applications you need to have a
layered architecture

* Improved modularity and reuse
+ Simplifies development
* Simplifies testing

@ Sun 2007 JavaOneS™ Conference | Session TS-7082 | 16 java.sun.com/javaone

JavaOne

Use a Layered Architecture

Transaction management
Security
Application assembly

Database Access

©Sun

Presentation Tier

| Managed Bean) | [Managed Bean ¥ | |
Business Tier
\ Service || Service Y ||
Entity) Entity¥
Entity¥

Persistence Tier

DAO" DAOY

Database

2007 JavaOne®M Conference | Session TS-7082 |

Spring or EJB ¥

SQL: JDBC, iBATIS
or
OR/M: Hibernate, JPA

/‘

17 java.sun.com/javaone

JavaOne

Separating Concerns in the Backend

* Layers are essential because they separate some concerns,
e.g. presentation and business logic

* But within the business tier there are concerns that are not
easily separated

* Transactions

© Security

* Persistence

* Other: logging, auditing, etc.

* These are cross cutting concerns
* Span multiple application components

* Can'’t be solved by traditional modularization mechanisms such as layers
or base classes

* You must implement them by sprinkling code throughout the application

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 18 java.sun.com/javaone

JavaOne

Traditional Architecture =
Tangled Concerns

Application
Module A Module B Module C
Business logic Persistence
Transactions Security

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 19 java.sun.com/javaone

© Sun

POJO = Plain Old Java Object

Java objects that don’'t implement any special
interfaces or (perhaps) call infrastructure APls

Coined by Martin Fowler, Rebecca Parsons, and
Josh MacKenzie to make them sound just as
exciting as JavaBeans, Enterprise JavaBeans™
technology

Simple idea with surprising benefits

2007 JavaOnes™ Conference | Session TS-7082 | 20 java.sun.com/javaone

JavaOne

POJO Application Architecture

< POJOs

Application

Module A Module B Module C

/v ORM AOP-based security

Hi .
ibernate AOP-based transactions <«—— Spring

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 21 java.sun.com/javaone

JavaOne

Agenda

Using JavaServer Faces technology
for the Ul

Building a POJO backend
Using Spring in the business tier
Using Hibernate for persistence

Integrating Spring and JavaServer Faces
technology

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 22 java.sun.com/javaone

JavaOne

Overview of Spring

* What is Spring?
* Framework for simplifying Java EE platform
application development
* Rich feature set including dependency injection,
AOP, ORM support, a web framework, ...
* Key Spring features:
* Dependency injection

* AOP for transaction management, security and
application-specific cross cutting concerns

* Classes for simplifying data access

@ Sun 2007 JavaOneS™ Conference | Session TS-7082 | 23 java.sun.com/javaone

JavaOne

Spring Lightweight Container

Lightweight container = sophisticated factory for
creating objects

Spring bean = object created and managed
by Spring

You write metadata (e.g. XML) or code that
specifies how to:

Instantiate Spring beans

Initialize them using dependency injection

Separates component instantiation and assembly
from the components themselves

©Sun 2007 JavaOnes™ Conference | Session TS-7082 | 24 java.sun.com/javaone

JavaOne

Spring Code Example

public class ProjectCoordinatorImpl ... <bean id="projectCoordinator"
- class="ProjectCoordinatorImpl">
public ProjectCoordinatorImpl(.———"] | <constructor-arg ref="projectRepository"/>
ProjectRepository

projectRepository, ...) <'/.i3ean>
{
this.projectRepository =
projectRepository;
b

: : : : <bean id="projectRepository"
public class HibernateProjectRepository *“TT——class="HibernateProjectRepository">

implements ProjectRepository {

</Bean>

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 25 java.sun.com/javaone

JavaOne

© Sun

Spring AOP

* AOP enables the modular implementation of
crosscutting concerns

+ Spring AOP = simple, effective AOP implementation
* Lightweight container can wrap objects with proxies

* Proxy executes extra code before/after/instead-of
original method

* Spring uses proxies for:
* transaction management

© security
* tracing

2007 JavaOneS™ Conference | Session TS-7082 | 26 java.sun.com/javaone

JavaOne

Spring Transaction Management

V. call changeStatus() Y. call invoke() °. call changeStatus()
UpdateProject Transaction Project
Bean AOP Proxy Interceptor Coordinator
\ +. changeStatus() returns . invoke() returns 1. changeStatus() returns
Y. begin transaction Y. commit transaction

Transaction
Manager

¢. begin transaction
A. commit transaction

Transaction management

API
(JDBC, Hibernate, JDO,
JTA, ...)

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 27 java.sun.com/javaone

JavaOne

Spring 2 Transaction Management

<bean id="projectCoordinator" <beans>
class="ProjectCoordinatorImpl">

<aop:config>
\ <aop:advisor
</bean> pointcut="
\\ execution(* *,.*Coordinator.*(..))"

advice-ref="txAdvicg"/>
</aop:config>

A\ 4

<bean id="transactionManager" < <tx:advice id="txAdvice">
class="HibernateTransactionManager"> <tx:attributes>
<tx:method name="*"/>
</bean> </tx:attributes>

</tx:advice>

</beans>

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 28 java.sun.com/javaone

Java

JavaOne

Handling Custom
Crosscutting Concerns

Examples of application-specific crosscutting concerns
Auditing—recording user actions in a database
Automatically retrying failed transactions

The traditional approach = sprinkle code throughout the
application

Auditing—logic in every business method

Transaction retry—loop/try/catch around every call

It simple but there are important drawbacks
Duplication of code
Business logic does several things [1 more complex
Easy to forget [1 insecure/fragile application

@ Sun 2007 JavaOneS™ Conference | Session TS-7082 | 29 java.sun.com/javaone

JavaOne

Example Transaction Retry Aspect

public class TransactionRetryAspect {
protected int maxRetries = 3;

public Object retryTransaction (ProceedingJoinPoint ijp)
throws Throwable {
int retries = 0;
while (true)
try {
return Jjp.proceed();
} catch (ConcurrencyFailureException e) {
if (retries++ > maxRetries)
throw e;
else continue;

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 30 java.sun.com/javaone

JavaOne

Bean and Aspect Definitions

<bean id="transactionRetryPOJOAspect"
class="net.chrisrichardson.aspects.retry.TransactionRetryPOJOAspect'>
<property name="maxRetries" value="4" />
</bean>

<aop:config>
<aop:pointcut id="serviceMethod"
expression="execution (public *

net.chrisrichardson. .*Coordinator.*(..))" />

<aop:aspect id="txnRetryAspect" ref='"transactionRetryAspect" >
<aop:around method="retryTransaction" pointcut-ref="serviceMethod"
/>
</aop:aspect>

</aop:config>

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 31 java.sun.com/javaone

JavaOne

DEMO

Spring Service Layer

2007 JavaOne®™ Conference | Session TS-7082 | 32 iava.sun.com/iavaone

JavaOne

Agenda

Using JavaServer Faces technology
for the Ul

Building a POJO backend
Using Spring in the business tier
Using Hibernate for persistence

Integrating Spring and JavaServer Faces
technology

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 33 java.sun.com/javaone

JavaOne

POJO Persistence

* Using an object/relational framework:
* Metadata maps domain model to the database schema
* Application code written in terms of objects
* ORM framework generates SQL statements

* Java Persistence API (JPA)
* Standardized OR/M

* Hibernate
* Very popular open-source project
* It's a superset of Java Persistence API

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 34 java.sun.com/javaone

JavaOne
class Project { <class name="Project" table="PROJECT">
private int id; <id name="id" column="PROJECT_ID">
private String name; <generator class="native" />
</id>
b <property name="name" column="NAME"/>
</class>

public class HibernateProjectRepository ... {

public void add(Project project) {
getHibernateTemplate().save(project);

¥

public Project get(int projectld) {
return (Project) getHibernateTemplate().get(Project.class, projectld);

¥

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 35 java.sun.com/javaone

JavaOne

Cool OR/M Framework Features

Provides (mostly) transparent persistence
* QObjects are unaware that they are persistent

* Minimal constraints on classes
* They are POJOs

Supports navigation between objects

* Application navigates relationships

* ORM framework loads objects behind the scenes
Tracks changes to objects

* Detects which objects have changed
- Automatically updates the database

Manages object identity
* Only one copy of an object per PK
* Maintains consistency

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 36 java.sun.com/javaone

JavaOne

O/R Mapping Framework Benefits

Improved productivity:
* High-level object-oriented API
* Less Java code to write
* No SQL to write

Improved performance
* Sophisticated caching
* Lazy loading
* Eager loading

Improved maintainability
* Aot less code to write

Improved portability

* ORM framework generates database-specific SQL for you

031':‘?1 2007 JavaOneS™ Conference | Session TS-7082 | 37 java.sun.com/javaone

JavaOne

DEMO

Hibernate Data Access Layer

2007 JavaOne®™ Conference | Session TS-7082 | 38 iava.sun.com/iavaone

© Sun

Using JavaServer Faces technology
for the Ul

Building a POJO backend
Using Spring in the business tier
Using Hibernate for persistence

Integrating Spring and JavaServer Faces
technology

2007 JavaOnesM Conference Session TS-7082 39 java.sun.com/javaone

JavaOne

Division of Labor: Managed Beans vs.
Spring Beans

* Inject service-layer Spring beans into JavaServer
Faces technology managed beans

* Logical separation of Ul from Service Layer

* Integrated support with Spring
DelegatingVariableResolver

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 40 java.sun.com/javaone

JavaOne

Spring in a Web Application

<web> AN
<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>
classpath:/appCtx/services.xml
classpath:/appCtx/transactions.xml

</param-value>
</context-param>
<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>
</web>
defines
WebApplicationContextUtils
Stores Provides access to
WebApplication
ServletContext — .
Context getWebApplicationContext(ServletContext) {static}
getRequiredWebApplicationContext(ServletContext) {static}

@ Sun 2007 JavaOnes™ Conference | Session TS-7082 | 41 java.sun.com/javaone

JavaOne

JavaServer Faces
Technology and Spring

* Managed beans = simple dependency injection
* Extend to resolve bean references using Spring

* DelegatingVariableResolver
* Included with Spring 1.1 and higher

* First, looks for a JavaServer Faces technology
managed bean

* Then, looks for a Spring bean

@ Sun 2007 JavaOneS™ Conference | Session TS-7082 | 42 java.sun.com/javaone

JavaOne

JavaServer Faces
Technology Example

<faces-config>
<application>
<variable-resolver>
org.springframework.web.jsf.DelegatingVariableResolver
</variable-resolver>
</application

<beans>

<bean id="projectCoordinator"
class="opg"..
' oordinatorImpl">

<managed-bean>
<managed-bean-name>
inboxBean
</managed-bean-name>
<managed-property>
<property-name>
projectCoordinator
</property-name>
<value>#{projectCoordinator}</value>
</managed-property>
</managed-bean>

</beans>

2/faces-config>

@ Sun 2007 JavaOnes Conference | Session TS-7082 | <number java.sun.com/javaone

JavaOne

Accessing the WebApplicationContext

Use the WebApplicationContextVariableResolver
Available in Spring 1.25 or later

Exposes Spring WebApplicationContext under
the "webApplicationContext” variable

Allows you to access the Spring BeanFactory and
other services directly from managed beans

This feature is included in Apache Shale

@ Sun 2007 JavaOnes" Conference | Session TS-7082 | <number java.sun.com/javaone

JavaOne

JavaServer Faces Technology-Spring

Alternative to DelegatingVariableResolver

Full bidirectional integration between Spring beans and
JavaServer Faces technology managed beans

Managed beans can refer to Spring beans
Spring beans can refer to managed beans

Enables integration between Spring MVC and JavaServer
Faces technology

Supports JavaServer Faces 1.1 platform and Spring 2.0

Open source on SourceForge
Sponsored by mindmatters

@ Sun 2007 JavaOne® Conference | Session TS-7082 | <number java.sun.com/javaone

JavaOne

JBoss Seam Integration

Spring DelegatingVariableResolver

Spring integration module
Injecting Seam components into Spring beans
Injecting Spring beans into Seam components
Making a Spring bean into a Seam component
Seam-scoped Spring beans

Some Seam features will be standardized as
Wrts of JavaServer Faces 2.0 platform and the
ebBeans JSR

@ Sun 2007 JavaOnes" Conference | Session TS-7082 | <number java.sun.com/javaone

JavaOne

DEMO

JavaServer Faces Technology/
Spring Integration

2007 JavaOnes™ Conference | Session TS-7082 | <nu iava.sun.com/iavaone

JavaOne

Summary

* JavaServer Faces technology, Spring and Hibernate work
well together

* JavaServer Faces technology implements the presentation tier
* Spring provides dependency injection and AOP
* Hibernate transparently persists POJOs
* JavaServer Faces technology and Spring are seamlessly
integrated through dependency injection
* Spring 2 integration
* JavaServer Faces technology-Spring
* Seam Spring integration

@ Sun 2007 JavaOnes Conference | Session TS-7082 | <number java.sun.com/javaone

JavaOne

For More Information

* ProjectTrack Sample Code
* http://code.google.com/p/projecttrack/

* POJOs in Action, Chris Richardson

* http://www.manning.com/crichardson

* JSF in Action, Kito D. Mann

* http://www.manning.com/mann

* Official Spring Site

* http://lwww.springframework.org

« QOfficial Hibernate Site

* http://www.hibernate.org

* Official JavaServer Faces Technology Site
* http://java.sun.com/javaee/javaserverfaces/

@ Sun 2007 JavaOnes Conference | Session TS-7082 | <number java.sun.com/javaone

JavaOne

© Sun

For More Information

* JSF-Spring

http://jsf-spring.sourceforge.net/

* JSF Central

http://www.jsfcentral.com

* Sessions and BOFs

TS-6178—Simplifying JavaServer Faces Component Development

TS-4439—Minimalist Testing Techniques for Enterprise Java
Technology-Based Applications

BOF-4400—Improve and Expand JavaServer Faces Technology
with JBoss Seam

TS-4514—Three Approaches to Securing Your JavaServer Faces
Technology/Spring/Hibernate Applications

2007 JavaOnes™ Conference | Session TS-7082 | <number java.sun.com/javaone

JavaOne

Q&A

Kito Mann Chris Richardson
Author of JSF in Action Author of POJOs
www.virtua.com In Action

www.chrisrichardson.net

2007 JavaOnes™ Conference | Session TS-7082 | <nu iava.sun.com/iavaone

technical excellence. it's that simple.

JavaOne

Building JavaServer Faces
Applications with Spring and
Hibernate

Kito Mann Chris Richardson

' ' Author of POJOs in Action
AN e ST 1 AEIan Chris Richardson Consulting, Inc

Virtua, Inc NG
WWW.virtua.com www.chrisrichardson.net

TS-7082

2007 JavaOne®M Conference | Session TS-7082 | iava.sun.com/ iavaone

