Overview of POJO programming

A simpler, faster way to build long-lived applications

by

Chris Richardson
chris@chrisrichardson.net

http://www.chrisrichardson.net

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

About Chris...

Developing Enterprise Applications with Lightweight Frameworks

20J0s
INACTION

(hris Richardson

(IIH.HIN!NG

O0On0

O O

Grew up in England

Live in Oakland

Twenty years of software
development experience

B Building object-oriented
software since 1986

B Using Java since 1996
B Using J2EE since 1999

Author of POJOs in Action

Run a consulting company
that helps organizations
build better software
faster

Chair of the eBIG Java SIG
in Oakland (www.ebig.org)

6/20/2006

Copyright (c) 2006 Chris 2

Richardson. All rights reserved.

Overview

POJOs + lightweight frameworks:
B Simplify development
B Accelerate development

B Make applications immune to the
volatility of enterprise Java technology

Focus on the “backend” frameworks:
B Business tier
B Database access tier

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

Agenda

The trouble with traditional
enterprise Java frameworks

Overview of POJOs

Assembling POJO applications with
dependency injection

Persisting POJOs with Hibernate

Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

Classic EJB architecture example

<<session bean>>
TransferService

TransactionDetails transfer(fromAccountld, toAccountld, amount)
AccountDAO ,' TransactionDAO <<dt°>_>
Transaction
AccountDTOload Account(accountld) createTransaction() Details
saveAccount(AccountDTO)
txnld
date
\,V
AccountDTO
accountld
balance
Copyright (c) 2006 Chris
Richardson. All rights reserved.

6/20/2006

Problems with intertwined business
logic and infrastructure

Upgrading to new, better version of
Infrastructure framework is
difficult/impossible:

B Enterprise Java (1998-2006):
B Incompatible standards: EJB 1, EJB 2, EJB 3

B Many persistence options: EJB CMP 1/2,
Hibernate 1/2/3, JDO 1/2, EJB 3 persistence

[l Makes development more difficult

B Forced to think about business logic +
Infrastructure concerns simultaneously

B Developers need to know both

6/20/2006 Copyright (c) 2006 Chris 6
Richardson. All rights reserved.

...problems

Makes testing more difficult

B Must deploy code/tests in application
server

B Slows down the edit-compile-debug cycle
EJB 2 prevented OO development

EJB application servers are
B Complex
B Expensive (some)

6/20/2006 Copyright (c) 2006 Chris 7
Richardson. All rights reserved.

EJB as a cult

L In 1999 | readily embraced EJBs and its development
rituals:
B writing DTOs and unused lifecycle methods

B Waiting for EJBs to deploy

0 According to http://en.wikipedia.org/wiki/Cult

“a cult is a relatively small and cohesive group of people
devoted to beliefs or practices that the surrounding
culture or society considers to be far outside the
mainstream”

[0 But there is a better way....

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

Agenda

The trouble with traditional
enterprise Java frameworks

» Overview of POJOs

Assembling POJO applications with
dependency injection

Persisting POJOs with Hibernate

Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

POJO = Plain Old Java Object

Java objects that don't implement
any special interfaces or (perhaps)
call infrastructure APIs

Coined by Martin Fowler, Rebecca
Parsons, and Josh MacKenzie to make
them sound just as exciting as
JavaBeans, Enterprise JavaBeans

Simple idea with surprising benefits

6/20/2006 Copyright (c) 2006 Chris 10
Richardson. All rights reserved.

POJO application design

| Spring TransactionInterceptor

POJO facade

Domain model

TransferFacade

BankingTransaction transfer(fromld, told, amount)

TransferService

BankingTransaction transfer(fromid, told, amount)

Account

debit(amount)
credit(amount)

/

<<interface>>

Account

Repository

<<interface>>
BankingTransaction BN Banking
Repository Transaction

y

findAccount(id)

createTransaction(...)

<<interface>>
OverdraftPolicy

NoOverdraft
Policy

Limited
Overdraft

6/20/2006

Hibernate HibernateBanking
Accoynt Transaction
Repository Repository
findAccount(id) createTransaction(...)))
Object/relational
mapping
XML document
l Hibernate

Database
access

Copyright (c) 2006 Chris
Richardson. All rights reserved.

11

POJO code example

Simple Java classes

No lookup code — uses dependency
Injection instead

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

12

But POJOs are insufficient...
— Lightweight frameworks

[0 Endow POJOs with enterprise features
Object/relational mapping framework:
B Persists POJOs

B JDO, Hibernate, JPA, ...

Spring framework:

B Popular open-source framework

B Declarative transaction management
B Dependency injection

B Remoting, security, ...

6/20/2006 Copyright (c) 2006 Chris 13
Richardson. All rights reserved.

Key point: non-invasive frameworks

Provide services without the application:
B Implementing interfaces
B Calling APlIs

Configured using metadata:

E XML

B Java 5 annotations

POJOs + non-invasive frameworks =

simple, faster development of applications
that are immune to Infrastructure changes

6/20/2006 Copyright (c) 2006 Chris 14
Richardson. All rights reserved.

Deployment options

Web container-only server
B Tomcat or Jetty
B Simple yet sufficient for many applications

Full-blown server

WeblLogic, JBoss, WebSphere

Richer set of features

Enhanced manageability and availability
JTA

JMS

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

15

Benefits of using POJOs

[0 Separation of concerns

B Business logic is decoupled from infrastructure

B Switch frameworks or upgrade more easily

B Not everybody has to be an infrastructure framework expert
[0 Simpler development

B Think about one thing at a time

M Business logic, persistence, transaction management....
[l Faster development

B Testing without an application server (or a database)

B No deployment to slow you down
[0 More maintainable

B Modular object-oriented code

M Loosely coupled design
[J Simpler, perhaps cheaper deployment

B Deploy in a web-container only server
6/20/2006 Copyright (c) 2006 Chris 16

Richardson. All rights reserved.

Drawbacks of POJOSs...

...none except that lightweight
frameworks have their limitations
Use EJBs if you need.:

B Distributed transactions initiated by a
remote client

B Some application server-specific features
m

6/20/2006 Copyright (c) 2006 Chris 17
Richardson. All rights reserved.

Agenda

The trouble with traditional
enterprise Java frameworks

J Overview of POJOs

» Assembling POJO applications
with dependency injection

Persisting POJOs with Hibernate

Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris 18
Richardson. All rights reserved.

Dependency Injection

TransferFacade

D Appl ICatlon com ponents depend BankingTransaction transfer(fromld, told, amount)

on:

B One another

TransferService

. I nfraStFUCtu re Com ponents BankingTransaction transfer(fromld, told, amount)

[J Using JNDI or the new operator:
B Introduces coupling
B Complexity

[J Solution:

B Pass dependencies to a
component

B Setter injection
B Constructor injection

<<interface>> <<interface>>
Account BankingTra'nsaction
Repository Repository
findAccount(id) createTransaction(...)
Hibernate HibernateBanking
Account Transaction
Repository Repository
findAccount(id) createTransaction(...)

Hibernate

6/20/2006 Copyright (c) 2006 Chris

Richardson. All rights reserved.

19

Dependency injection example

public class MoneyTransferServicelmpl

public MoneyTransferServicelmpl(
AccountRepository
accountRepository, ...)

this.accountRepository =
accountRepository;

public class HibernateAccountRepository
implements AccountRepository {

[dYou can implement dependency injection by hand but

6/20/2006 Copyright (c) 2006 Chris 20
Richardson. All rights reserved.

Spring lightweight container

Lightweight container = sophisticated
factory for creating objects

Spring bean = object created and
managed by Spring
You write XML that specifies how to:

B Create objects
B Initialize them using dependency injection

6/20/2006 Copyright (c) 2006 Chris 21
Richardson. All rights reserved.

Spring code example

public class MoneyTransferServicelmpl <bean name="MoneyTransferService"

___——class="MoneyTransferServicelmpl">
«— | <constructor-arg ref="AccountRepository"/>
public MoneyTransferServicelmpl(

AccountRepository </bean>

accountRepository, ...)

this.accountRepository =
accountRepository;

<bean name="AccountRepository"
— ——class="HibernateAccountRepository">

]

public class HibernateAccountRepository +
iImplements AccountRepository {

</bean>

6/20/2006 Copyright (c) 2006 Chris 22
Richardson. All rights reserved.

Spring 2 — dependency Injection
INto entities

O Domain model entities @Configurable('pendingOrder")
need to access public class PendingOrder {
repOS|tor|eS/DAOS/etC private RestaurantRepository restaurantRepository;
[But they are created by —
: : public voi
the appllcatlon or by setRestaurantRepository(RestaurantRepository
Hibernate — not Spl’lng restaurantRepository) {
: : : this.restaurantRepository =
e T ies Mo |
i by
services clutters the code
[0 Spring 2 provides
ASpectJ—base_d = _ <aop:spring-configured />
qetpendtetr-lcy InJeCtlon <bean id="pendingOrder" lazy-init="true">
INTO enuties <property name="restaurantRepository"
|:| COnStrUCtorS p ref="RestaurantRepositorylmpl"
gutc_)matically invoke ——
pring
6/20/2006 Copyright (c) 2006 Chris 23

Richardson. All rights reserved.

Benefits of dependency injection

Simplifies code

B No calls to JNDI

Decouples components from:

B One another

B Infrastructure

Simplifies testing

B Pass in a mock/stub during testing

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

24

Mock object code example

Test the MoneyTransferServicelmpl
without calling the real
AccountRepository

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

25

Agenda

The trouble with traditional
enterprise Java frameworks

Overview of POJOs

Assembling POJO applications with
dependency injection

» Persisting POJOs with Hibernate

Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris 26
Richardson. All rights reserved.

POJO persistence

Use an object/relational framework:

B Metadata maps the domain model to the
database schema

B ORM framework generates SQL statements
Hibernate

B Very popular open-source project

JDO

B Standard from Sun — JSR 12 and JSR 243
B Multiple implementations: Kodo JDO, JPOX

EJB 3/Java Persistence APl (JPA)

6/20/2006 Copyright (c) 2006 Chris 27
Richardson. All rights reserved.

Hibernate: code example

Provides transparent persistence
Pieces:

Account
HibernateBankingExample.hbm.xml
HibernateAccountPersistenceTests
HibernateAccountRepository
HibernateAccountRepositoryTests
Spring beans

Only the repositories/DAQOs call persistence

framework APIs

6/20/2006

Copyright (c) 2006 Chris
Richardson. All rights reserved.

28

ORM framework features 1

[0 Declarative mapping
B Map classes to tables; fields to columns; relationships to foreign
keys and join tables
[0 CRUD API
B E.g. Hibernate Session, JPA EntityManager
[J Query language
B Retrieve objects satisfying search criteria
[J Transaction management
B Manual transaction management
B Rarely call directly - used by Spring
[J Detached objects
B Detach persistent objects from the DB
B Eliminates use of DTOs
B Supports edit-style use cases
6/20/2006 Copyright (c) 2006 Chris 29

Richardson. All rights reserved.

ORM framework features 2

[l Lazy loading
B Provide the illusion that objects are in memory
B But loading all objects would be inefficient
— load an object when it is first accessed

[l Eager loading

B |oading objects one at a time can be inefficient
B = |oad multiple objects per-select statement

1 Caching

B Database often the performance bottleneck

B — cache objects in memory whenever you can
B Easy for readonly objects
N

Optimistic locking and cache invalidation for changing
objects

6/20/2006 Copyright (c) 2006 Chris 30
Richardson. All rights reserved.

O/R mapping framework benefits

[l Improved productivity
B High-level object-oriented API
B |ess Java code to write
B No SQL to write
1 Improved performance
B Sophisticated caching
B |azy loading
B Eager loading
[l Improved maintainability
B A lot less code to write
[l Improved portability
B ORM framework generates database-specific SQL for you

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

31

When and when not to use an
ORM framework

Use when the application:

Reads a few objects, modifies them, and writes

them back

Doesn’t use stored procedures (much)

Don’t use when:

Simple data retrieval = no need for objects
Lots of stored procedures = nothing to map to

Relational-style bulk updates = let the database
do that

Some database-specific features = not
supported by ORM framework

6/20/2006

Copyright (c) 2006 Chris 32
Richardson. All rights reserved.

Agenda

The trouble with traditional
enterprise Java frameworks

Overview of POJOs

Assembling POJO applications with
dependency injection

Persisting POJOs with Hibernate

» Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris 33
Richardson. All rights reserved.

Making POJOs transactional

EJB 2 container-managed
transactions are great

Spring provides declarative
transactions for POJOs

Similar to CM transactions but

B Runs outside of an application server
B More flexible exception handling

6/20/2006 Copyright (c) 2006 Chris 34
Richardson. All rights reserved.

Spring AOP

[0 AOP enables the modular implementation of crosscutting

concerns
Spring AOP = simple, effective AOP implementation
Lightweight container can wrap objects with proxies
Proxy executes extra code:
B Before original method
B After original method
B [Instead of...
[0 Spring uses proxies for:
B transaction management
B security
B tracing
]

000

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

35

Spring Transactioninterceptor

1. call transfer()

4. call transfer()

. . Account
Presentation Transaction
. Management
Tier Interceptor
Facade
8. transfer() returns 5. transfer() returns
2. begin transaction 6. commit transaction
Platform
Transaction
Manager
3. begin transaction 7. commit transaction
Transaction management
API
(JDBC, Hibernate, JDO,
JTA, ..)
6/20/2006 Copyright (c) 2006 Chris 36

Richardson. All rights reserved.

Spring code example

<bean
name="AccountManagementFacade*
class="AccountManagementFacadelmpl">

\

</bean>

<bean
id="BankingTransactionlnterceptor"
class="Transactionlnterceptor">
<property name="transactionManager"
ref="myTransac?>nManager"/>

—

</bean>
=

<bean id="myTransactionManager"
class="HibernateTransactionManager">

</bean>

<bean id="transactionProxyCreator*

class=*...BeanNameAutoProxyCreator">

<property name="beanNames">
<list>

\<idref
bean="AccountManagementFacade"/>

</list>

</property>

<property name="interceptorNames">
<list>

—— <idref
bean="BankingTransactionlnterceptor'/>
</list>
</property>

</bean>

6/20/2006

Copyright (c) 2006 Chris

37

Richardson. All rights reserved.

Spring 2 — simplified XML

<bean <aop:config>
name="AccountManagementFacade* <aop:advisor
class="AccountManagementFacadelmpl"> pointcut="execution(* *..*Facade.*(..))"

advice-ref="txAdvice"/>
- </aop:config>

</bean=> e
<bean id="transactionManager" <tx:advice id="txAdvlce">
<tx:attributes>
class="HibernateTransactionManager"> «+—— <tx:method name="*"/>
</tx:attributes>
</bean> </tx:advice>
6/20/2006 Copyright (c) 2006 Chris 38

Richardson. All rights reserved.

Spring remoting

[0 Remoting
B Spring HTTP
B Hessian/Burlap
H RMI
]

[J Server uses a
<Xyz>=Exporter bean
B Service to expose
B Interface to expose

[J Client uses a
<Xyz>=>ProxyFactoryBean

<bean name="/accountManagement"
class="org.springframework.remoting.httpi
nvoker.

HttpInvokerServiceExporter">

<property name="gervice"
ref="TransferFacade"/>

<property name="gervicelnterface"
value="net.chrisrichardson..TransferFacade"“
/>

</beans>

<bean id="httpInvokerProxy"
class="org.springframework.remoting.httpi
nvoker.

HttpInvokerProxyFactoryBean">

<property name="sgserviceUrl"
value="http://somehost:8080/accountManage
ment" />

<property name="servicelnterface“
value="net.chrisrichardson..TransferFacade"“

. />
B URL to remote service </beans
6/20/2006 Copyright (c) 2006 Chris 39

Richardson. All rights reserved.

Spring Security

[0 Acegi Security
B Open source project
B Extension to Spring
[0 MethodSecuritylnterceptor

[0 Verifies that caller is
authorized

B Invoke method

<bean id=“transferSecurity"
class="org.acegisecurity.inter
cept.method.aopalliance.

MethodSecurityInterceptor">

<property
name="objectDefinitionSource">
<value>
net.chrisrichardson...
TransferFacade. *=

ROLE CUSTOMER, ROLE CSR

B Access instances </values>
</property>
</bean>
6/20/2006 Copyright (c) 2006 Chris 40

Richardson. All rights reserved.

Deploying a Spring application

<web-app>

[l Often packaged as a

WAR <context-param> . |
<param-name>contextConfigLocation
[0 Web.xml lists bean <P;£§;f32;2:§e>
definition files /beans1.xml
= /beans2 .xml
[0 ServietContextListener </param-value>
- </context-param>
creates Spring bean
faCtory <1i:::2re1::>:-class>
O Web tier is either: L pringtramevork web.contex.C
B Injected with Spring | _j/jistener-class>
beans
B Calls getBean()
6/20/2006 Copyright (c) 2006 Chris 41

Richardson. All rights reserved.

Summary

POJOs

+

Non-invasive
frameworks

Simplify development
Accelerate development
Improve maintainability

Increase immunity to
rapidly evolving
iInfrastructure
frameworks

6/20/2006

Copyright (c) 2006 Chris 42

Richardson. All rights reserved.

For more information

0 Buy my book ©

Developing Enterprise Applications with Lightweight Frameworks

[0 Send email:
chris@chrisrichardson.net

P0JOs
INACTION

LI Visit my website:

http://www.chrisrichardson.net

(hris Richardson

[0 Please hand in your

session evaluations —

6/20/2006 Copyright (¢) 2006 Chris 43
Richardson. All rights reserved.

Extra slides

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

44

Thoughts about EJB 3 and POJOs

Better than EJB2
Supports POJOs
Reasonable ORM
Entity beans = JPA

Annotations are
concise

Has dependency
Injection
It’s a standard

© © 00000

®

®)

® ©® O

&

Less powerful than
Spring, e.g. DI relies
on JNDI

Less powerful than

Hibernate, e.g.
List<String=>
Session beans/MDBs
must be deployed
Complexity of EJB
lurking within
Annotations couple
your code to EJB3

EJB’s poor track record

as a standard

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

45

Using Spring with EJBs

Simplify EJB client code with Spring

B Spring encapsulates JNDI lookup

B Client gets EJB reference from Spring

B Better: Client is injected with EJB reference

Move business logic into Spring beans
B Session EJBs delegate to Spring beans

B Use Spring dependency injection

B Simpler code, easier testing

Simplify DAOs with Spring JDBC

B Eliminates error-prone boilerplate code

6/20/2006 Copyright (c) 2006 Chris 46
Richardson. All rights reserved.

Migrating to POJOs — part 1

2 year old application:

B Session EJBs

B Entity Bean-based domain model

® Some JDBC DAOSs

B Beginning development of version 2

Replaced entity beans with Hibernate:
®m WAS vs. WLS portability

B Test business logic without persistence
B Test persistence without a server

® A much richer domain model

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

Migrating to POJOs — part 2

Used Spring beans for V2 code
Incrementally replaced V1 session
beans with Spring beans when:

B Enhancing it

B V2 code needed to call V1 code

End result:

B Richer domain model

B Faster development

B V2 code was deployable as a web app.

6/20/2006 Copyright (c) 2006 Chris 48
Richardson. All rights reserved.

